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Abstract 
A probabilistic model is proposed to describe the probability 
distributions of MTC hazards.  Existing deposits appear to 
validate the model to the degree possible.  The model 
reproduces deposit structures, and also identifies model inputs 
that are most likely to produce hazardous MTCs. 
 
Introduction 
A mass transport complex (MTC) can present significant 
hazards to certain offshore structures and activities.  
Specifically, the integrity and operations of underwater cables, 
pipelines, moorings, and other structures can be threatened by 
MTCs.  An effective and manageable use of these structures 
motivates a study of MTC hazards.  In general, MTC hazards 
are revealed by field studies of existing MTC events (Orange 
et al., 1999; Tappin et al., 2001, 2003; von Huene et al., 2004).  
Field studies are complimented by numerical models 
developed to evaluate MTC hazards.  These include various 
sediment stability models (e.g., Wright and Rathje, 2003), 
mass transport models (e.g., Imran et al., 2001; Syvitski and 
Hutton, 2003; Niedoroda et al., 2003), and probabilistic 
models (e.g., Watts, 2003, 2004).  Of these different 
techniques, probabilistic models have perhaps received the 
least attention, despite their many advantages.  In this work, 
MTC hazards are found by combining 1) stability analyses and 
2) sediment motion into a single hazards assessment model 
(HAM).  The HAM is a probabilistic model that provides 
probability distributions for most MTC hazards of interest.   
 
Hazard Assessment Model 
The HAM presented here is based in part on the probabilistic 
model of Watts (2003), although the HAM is significantly 
more sophisticated.  HAM inputs include slope morphology, 
sediment strength, sedimentation rate, water pressures, gas 
hydrate pressure and temperature, seismic parameters and 
other slope stability factors.  The stability of any given slope 
may be dominated by only a few model inputs (Watts, 2004).  

The frequency of MTCs is controlled by the rate of occurrence 
of storm waves, earthquakes, gas hydrate phase change, 
oversteepening, sedimentation events and other MTC 
triggering mechanisms.  The HAM performs two distinct 
computations.  Stability analyses of sediment structures 
evaluate MTC failure planes.  Sediment motion post failure 
describes MTC velocities and deposition.   
 
There are several important differences between our earlier 
work (Watts, 2003, 2004) and the HAM.  First, HAM 
computations are carried out explicitly on a yearly basis, 
directly providing return periods of practical interest.  Second, 
HAM outputs can occur at any distance from the initiation of 
mass failure.  Third, HAM outputs focus on deposit hazards 
rather than tsunami hazards.  Fourth, slope stability is treated 
by a method of slices with a variety of failure plane shapes 
(Turner and Schuster, 1996).  Fifth, gas hydrates influence 
slope stability in the HAM. 

 

 
 

Fig. 1:  Region offshore Santa Barabara, CA 
 
Uses for Uncertainty 
The slope conditions that trigger hazardous MTCs are found 
by running the HAM multiple times with randomized inputs.  
The HAM uses probability distribution functions to address 
geological uncertainty, with the understanding that these 
uncertainties may have a greater impact on sediment deposits 
than the errors in the slope stability or sediment motion 
models used.  We demonstrate these ideas further below.   
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Random model inputs are meant to address geological 
uncertainty.  The HAM also addresses epistemic uncertainty, 
or the differences among experts.  Epistemic uncertainty is 
inherent to the current state of expert knowledge, which is 
distinct from geological uncertainty.  Epistemic errors can be 
ascertained by running several different models and 
comparing the simulation results.  This approach is not new, 
having been adopted by Syvitski and Hutton (2003) among 
others.   
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Fig. 2:  Predicted MTC thicknesses 
 

At every physical location in the HAM, probability 
distribution functions describe the sediment velocities attained 
and the sediment distances traveled.  The probable structure of 
MTC deposits is formed over time.  Because the HAM is 
specifically designed to inform risk analyses for offshore 
structures, it must first be shown to reproduce known deposits. 
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Fig. 3:  Predicted MTC maximum velocities 

 
Offshore Santa Barbara Results 
We undertook a case study to compare seismic images of 
layered MTCs with results found by running the HAM.  The 
chosen slope is off Santa Barbara, CA (Fig. 1).  The 
probability of an earthquake of a given magnitude is provided 
by the Working Group on California Earthquake Probabilities 
(1995).  We ran the HAM for 169,000 years and produced 95 
MTC events, for a mean return period of every 1800 years.  
With a typical sedimentation rate of 4 mm per year, we can 
expect 7 m of sediment between each MTC event.  The 
computed thicknesses in Fig. 2 indicate that MTCs favor a 
typical thickness of around 60 m in these sediments and on 
this slope.  These values agree qualitatively with the recent 
work of Lee et al. (2003) and Greene et al. (2003).  We 
estimate maximum sediment velocity using analytical models 
in this work for demonstrative purposes.  We predict the 
maximum sediment velocity using a “complete” model given 
by Watts (1998) and a “simplified” model given by Watts et 
al. (2003).  We find that 24% of MTC events undergo 
creeping motion.  While the two probability distributions 
appear very similar, Fig. 4 shows that the correlation between 
the two velocity models is not favorable.  We predict the 
maximum sediment runout using a “complete” model given by 
Watts and Waythomas (2003) and a “simplified” model given 
by Walder et al. (2003).  Fig. 5 demonstrates the significant 
difference in results from the two models.   
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Fig. 4:  Comparison of results from two velocity models 
 
Discussion of Results 
We compared HAM results with known deposits off Santa 
Barbara documented by recent marine surveys (Lee et al., 
2003; Greene et al., 2003).  The HAM results appear to be 
able to predict the deposit structure with reasonable accuracy.  
We did not find any significant difference in the probability 
distributions as a function of the stability analysis method 
used, which is apparently a common result (Turner and 
Schuster, 1996; Syvitski and Hutton, 2003).  We also found 
that sediment center of mass motion is robust to different 
analytical models (Watts and Grilli, 2003).  However, 
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sediment runout appears to depend significantly on the chosen 
model.  This means that some MTC structures are poorly 
constrained by existing models.  Consequently, a random 
choice of model inputs and a random choice of models may be 
the only way to ascertain the realm of possible MTC hazards.   
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Fig. 5:  Predicted MTC runout distances 
 

Conclusions 
A probabilistic model can describe the probability 
distributions of MTC hazards.  Existing deposits appear to 
validate the HAM to the degree possible.  The HAM 
reproduces deposit structures, and also identifies model inputs 
that are most likely to produce hazardous MTCs.   
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