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Abstract

This report documents the computer program FUNWAVE based on the
fully nonlinear Boussinesq model of Wei et al� ������� The documentation

provides a description of the governing equations and the numerical scheme

used to solve it� A user�s manual is provided and gives instructions on how

to use various preprocessors and postprocessors to set up and read data �les

needed for model runs� Fortran code is provided for one and two	dimensional

versions of the model
 as well as for the additional data processing programs�

Finally
 several example calculations are documented�
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� THEORETICAL BACKGROUND

This section provides an overview of the theory incorporated in FUNWAVE� A more
extensive review of the topic of shallow water wave propagation may be found in
Kirby �������

Boussinesq�type equations provide a general basis for studying wave propagation in
two horizontal dimensions� At their core
 the equations are the shallow water equa�
tions for nondispersive linear wave propagation� This basic foundation is extended
by the addition of terms which include the lowest order e�ects of nonlinearity and
frequency dispersion� This formulation provides a sound and increasingly well�tested
basis for the simulation of wave propagation in coastal regions�

The standard Boussinesq equations for variable water depth were �rst derived by
Peregrine ���	��
 who used the depth�averaged velocity as a dependent variable�
Numerical models based on Peregrine�s equations or equivalent formulations have
been shown to give predictions which compare quite well with �eld data �Elgar and
Guza ��
�� and laboratory data �Goring ���
� Liu
 Yoon and Kirby ��
�� Rygg
��

�
 when applied within their range of validity�

The assumption of weak frequency dispersion e�ects makes the standard Boussinesq
equations invalid in intermediate and deep water� The corresponding dispersion re�
lation of the standard Boussinesq equations is a polynomial approximation to the
exact solution based on a hyperbolic tangent function
 which only matches well in
shallow water areas� Recently
 extended forms of Boussinesq equations have been de�
rived by Madsen et al� ������ and Nwogu ������
 among others� In the derivation of
Madsen et al� ������
 additional terms which are formally equivalent to zero within
the accuracy of the model are introduced to the momentum equations� The form
of these terms was governed by the constraint of obtaining the best possible linear
dispersion relation and the optimal linear shoaling property �Madsen and Sorensen

������ Nwogu ������ used the velocity at a certain depth as a dependent variable and
pursued a consistent derivation of the governing equations using this non�standard
dependent variable� In the end
 the choice of the representative depth was again
constrained by the goal of obtaining the most accurate possible dispersion relation�
Although the methods of derivation are di�erent
 the resulting dispersion relations of
these extended Boussinesq equations are similar
 and may be thought of as a slight
modi�cation of the ��
�� Pad�e approximant of the full dispersion relation �Witting

��
��� The relation may all be written in the form

�� � ghk�
�� �� � �

�
��kh��

�� ��kh��
���

Figure � shows the comparison of exact dispersion relation with those from Nwogu�s






equations for several values of �
 which corresponding to di�erent models� In shallow
water limit as kh � �
 all curves approach together to

p
gh� However
 as kh values

increase
 discrepancies from the exact solution become large� The dispersion relation
from Nwogu�s Boussinesq equations for the optimal value � � ������ is much closer
to the exact solution in intermediate water depths than that from standard Boussinesq
equations� Madsen and Sorensen ������
 and Nwogu ������ have shown by example
that the extended equations are able to simulate wave propagation from relatively
deep to shallow water� Wei and Kirby ������ developed a high order numerical
model based on Nwogu�s equations
 and provided additional validation tests of the
model�
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Figure �� Comparison of linear dispersion relations� solid line � exact solution� dash
line � � � ������
 optimal value � dotted line � � � ����
 ��
�� Pad�e approximant�
dash�dot line � � � ����
 standard Boussinesq equations�

Despite their improved dispersion relation
 the extended Boussinesq equations are still
restricted to situations with weakly nonlinear interactions� In many practical cases

however
 the e�ects of nonlinearity are too large to be treated as a weak perturbation
to a primarily linear problem� As waves approach shore
 wave height increases due to
the e�ect of shoaling
 and wave breaking occurs on most gentle natural slopes� The

�



wave height to water depth ratios accompanying this physical process are inappro�
priate for weakly�nonlinear Boussinesq models
 and thus extensions to the model are
required in order to obtain a computational tool which is locally valid in the vicinity
of a steep
 almost breaking or breaking wave crest� Moreover
 as shown by Chen et
al� ����
�
 both sets of equations introduced by Madsen and Sorensen ������ and
Nwogu ������ are not applicable to combined wave�current motions which are often
encountered in nearshore regions�

Adapting the approach of Nwogu ������ but making no assumption of small non�
linear e�ect
 Wei et al� ������ derived a new set of Boussinesq equations which
include additional nonlinear dispersive terms� Not only can the equations be applied
to intermediate water depth as the extended Boussinesq equations with improved
dispersion relation
 but also be capable for simulating wave propagation with strong
nonlinear interaction� The inclusion of full nonlinearity also leads to a correct form of
Doppler Shift in the equations when an ambient current is present� In other words

the new equations are suitable for modelling wave�current interaction as shown by
Kirby ������� Numerical results obtained with this model have been compared to
boundary integral solutions of the full ��D vertical problem
 and have been shown to
be quite accurate in predicting the form of solitary waves either propagating in con�
stant depth or shoaling up a planar beach� Additional validation tests are described
in the user�s manual below�

To enable the Boussinesq model to simulate surf zone hydrodynamics
 energy dissi�
pation due to wave breaking is modelled by introducing an eddy viscosity term into
the equations
 with the viscosity strongly localized on the front face of the breaking
waves� Wave runup on the beach is simulated using a permeable�seabed techniques�
Both breaking and runup schemes are detailed in Kennedy et al� ������ and Chen
et al� �����b�� A brief description and veri�cations of the surf zone model are also
given in this manual�

��� Model Equations� Two Spatial Dimensions

We now provide the mathematical basis for the model FUNWAVE� The numerical
scheme used to obtain solutions of these equations is described in the following section�
The fully nonlinear Boussinesq equations derived by Wei et al� ������ are given by

�t � r �
�
�h � ��

h
u� �
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z� �

�
�
�h� ��
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r
�
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�
�
z�� � �

�
�h� � h� � ���
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where � is the surface elevation
 h is the still water depth
 u� is the horizontal
velocity vector at the water depth z � z� � ������h
 r � ����x� ���y� is the
horizontal gradient operator
 g is the gravitational acceleration
 and subscript t is
the partial derivative with respect to time� Equations ��� and ��� are statements of
conservation of mass and momentum
 respectively� As detailed below
 equations ���
and ��� may be transformed into di�erent equations governing wave propagation by
dropping certain terms and�or changing certain coe�cients�

Equations ��� and ��� describe the frictionless evolution of nonbreaking waves over a
smooth
 impermeable bottom� In order to develop a model for practical application

several e�ects have to be incorporated into the model scheme
 including physical ef�
fects of frictional damping and wave breaking
 as well as extensions needed to perform
purely numerical tasks including wave generation
 boundary absorption
 and moving
shoreline� We rewrite equations ��� and ��� including these extensions as

�t � E��� u� v� � �E���� u� v� � f�x� y� t� ���

�U�u��t � F ��� u� v� � �F��v��t � ��F���� u� v� � F t��� ut� vt��

�Fb � Fbr � Fbs � Fsp ���

�V �v��t � G��� u� v� � �G��u��t � ��G���� u� v� �Gt��� ut� vt��

�Gb �Gbr �Gbs �Gsp �	�

Here u and v are the horizontal velocities in horizontal directions x and y at depth
z � z� � ������h
 i�e�
 �u� v� � u�
 and � is a control parameter allowing us to
choose between fully �� � �� or weakly �� � �� nonlinear cases� The quantities
U� V� E�E�� F� F�� F�� G�G�� G�� F

t and Gt are functions of �
 u
 v
 ut or vt which are
de�ned as

U � u� h �b�huxx � b��hu�xx� ���

V � v � h �b�hvyy � b��hv�yy� �
�

E � ��
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where a�
 a�
 b�
 b� are constants which are related to the dimensionless reference
water depth 
 � z��h � ������ by

a� �
�

�

� � �

	
� a� � 
 �

�

�
� b� �

�

�

�� b� � 
 ����

The extended Boussinesq equations of Nwogu ������ can be recovered by setting
� � �� For standard Boussinesq equations of Peregrine ���	��
 we replace velocity at
a certain depth u� by depth�averaged velocity �u in the governing equation and de�ne
the control parameters as�

� � �� a� � �� a� � �� b� �
�

	
� b� � ��

�
����

Nonlinear shallow water equations can be obtained by replacing u� as �u and setting

� � a� � a� � b� � b� � � ����

Notice that � and 	 in ��� result from the use of a permeable seabed or slot technique
for simulation of shoreline runup� They are described in Section ���� In the absence
of the slot scheme
 � � h� � and 	 � ��

The remaining terms are added to the model to perform speci�c tasks� First
 the
term f�x� y� t� in ��� is the source function for wave generation
 described in section
��� below and in more detail in Wei et al� �������

��



Secondly
 the vector �Fb� Gb� in ���	� is the bottom friction vector
 given by

�Fb� Gb� �
K

h � �
u�ju�j ����

K is the friction coe�cient and has been set to as K � ������
 pending more careful
studies of mean  ow generation in the model�

Thirdly
 the vector �Fbr� Gbr� appearing in �����	� is the wave breaking model
 de�
scribed in Section ���� Smogorinsky�type subgrid model is introduced by �Fbs� Gbs�
to account for the e�ects of unresolved turbulence on the computed  ow �eld� They
are discussed in Section ��	�

Finally
 the vector �Fsp� Gsp� provides for wave absorption by damping at model
boundaries
 and is described in section ������

��� Model Equations� One Spatial Dimension

The model detailed above is considerably faster to run as a purely one�dimensional
code if one�dimensional results are sought
 as the two�dimensional version must be a
minimum of �ve grid spaces wide� The governing equations for the one�dimensional
version are given here�

�t � E��� u� � �E���� u� � f�x� t� ����

�U�u��t � F ��� u� � ��F���� u� � F t��� ut�� � Fbr � Fb � Fsp ����

The quantities U�E�E�� F� F� and F t involve spatial derivatives of �
 u
 and ut and
are de�ned by

U � u� h �b�huxx � b��hu�xx� ����

E � ��

	
��u�x �

n
a�h

�uxx � a�h
��hu�xx

o
x

��	�

F � �g�x � uux ����

E� � �
nh
a�h

�� � �
�
��h� � ���

i
uxx

o
x
�
nh
a�h� � �

�
��h� ��

i
�hu�xx

o
x

��
�

F� � �
�
�

�
�z�

� � ���uuxx

�
x

� f�z� � ��u�hu�xxgx �
�

�

n
��hu�x � ��ux��

�
o
x
����

F t �
n�
�
��uxt � ��hut�x

o
x

����

where a�
 a�
 b�
 b� and � are de�ned in ����� ����
 and � and 	 are de�ned in ����
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��� Wave Generation by Source Function

In keeping with the idea that we are solving an initial boundary value problem

it would be desirable to develop boundary conditions for Boussinesq models which
can provide a combination of wave generation
 wave absorption
 and wave re ection
e�ects� However
 the problem of providing a well�posed boundary value problem
for these equations is essentially an unsolved problem� In particular
 the problem
of providing absorbing conditions which will work for the entire range of modeled
frequencies is complicated immensely by the wide range of phase speeds seen at the
boundary�

In recognition of the di�culties imposed by this approach to model operation
 we
follow the lead of a number of previous Boussinesq model developers and
 instead

generate waves using an internal source mechanism� Such an approach has been doc�
umented previously by Larsen and Dancy ���
�� who used a somewhat ad�hoc source
mechanism where water mass is added and subtracted along a straight source�sink
line inside the computing domain� Sponge layers are placed in the ends of the do�
main to e�ectively damp the energy of outgoing waves with di�erent frequencies and
directions� This approach works well in a staggered�grid di�erencing scheme
 where
water is essentially being added to or drained from a single grid block� In applying
this technique to the Boussinesq model on an unstaggered grid
 however
 we found
that use of a single source line caused high frequency noise
 leading to blowup of the
model� Instead
 we use a spatially distributed mass source f�x� y� t� in equation ����
The corresponding linearized theory for the distributed source function is given in
Wei et al� �������

Assume that in a constant water depth of h we want to generate a plane wave with
amplitude a� and angular frequency �� The angle between the propagation direction
of the wave and the x�axis is �
 as shown in Figure �� Without losing generality
 we
assume that the center of the source region is parallel to the y�axis� Then we split
the source function f�x� y� t� into two parts as

f�x� y� t� � g�x�s�y� t� ����

where g�x� is a Gaussian shape function and s�y� t� the input time series of the
magnitude of source function� It is convenient to make this separation
 since the
dimensionality of the input signal required to run the model
 s�y� t�
 is reduced by
one relative to f�x� y� t�� The functions g�x� and s�y� t� are de�ned as

g�x� � exp��
�x� xs�
�� ����

s�y� t� � D sin��y � �t� ����

where 
 is the shape coe�cient for the source function
 and xs is the central location
of the source in the x direction
 for a source oriented parallel to the y axis
 as shown

��



in Figure �� The model also provides for the presence of sources along the lateral
boundaries parallel to the x axis� D is the magnitude of the source function
 � �
k sin��� the wavenumber in the y direction
 and k is the linear wavenumber�

W

x x x1 2s
x

y

l

λ k

θ

Figure �� Source function de�nition in the computing domain�

For a monochromatic wave or a single wave component of a random wave train
 the
magnitude D of source function can be determined by

D �
�a� cos�����

� � ��gk
�h��

�kI��� ��kh���
����

where � � ������
 �� � � � ���
 and I is the integral given by

I �
Z
�

��

exp��
x�� exp��ilx�dx �

s





exp��l���
� ����

where l � k cos��� is the wavenumber in x direction� In theory
 the shape coe�cient

 can be any number� The larger the value 
 is
 the narrower the source function
becomes� However
 in our numerical model
 good results were obtained when the
width of the source functionW equals about half of the wavelength for monochromatic
wave� The de�nition of W is not unique
 and here we de�ne W to be the distance
between two coordinates x� and x� where the corresponding source function heights
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are equal to exp���� � ����	� times the maximum height D� Then x� and x� must
satisfy the quadratic equation


�x� xs�
� � � ��	�

from which the width of source function is given by

W � jx� � x�j � �

s
�



����

If L is the wavelength
 the requirement of W � �L�� �where � is of order �� results
in


 �
�

��L����
�


�

��L�
��
�

For random waves
 the value of 
 is determined according to the peak frequency
component and then used for all components in the wave train�

��� Wave Breaking

Wave breaking in Boussinesq models has been modeled using a range of techniques�
It appears that a technique which is capable of preserving the shape of the breaking
wave as well as modeling wave height decay requires a dissipation mechanism which
is spatially and temporally localized and tied to the front face of the wave� Available
techniques of this type range �chronologically and in complexity� from the eddy vis�
cosity formulation of Zelt ������
 through the momentum correction � surface roller
model of Sch!a�er et al ������
 to the similar model Svendsen et al� ����	�� At present

there is very little evidence showing that any formulation signi�cantly outperforms
any other
 and so we utilize the eddy viscosity formulation similar to that of Zelt
������
 but with extension to provide a more realistic description of the initiation
and cessation of wave breaking�

Following Kennedy et al� ������
 we model the energy dissipation due to wave break�
ing in shallow water by introducing the momentum mixing terms�

Fbr �
�

h� �

�
����h � ��u��x�x �

�

�
�����h� ��u��y � ��h� ��v��x��y

�
����

Gbr �
�

h � �

�
�

�
�����h � ��v��x � ��h� ��u��y��x � ����h � ��v��y�y

�
����

where superscripts x and y represent the directions in the horizontal plane
 subscripts
x and y denote spatial derivatives
 and � is the eddy viscosity localized on the front
face of the breaking wave� It should be emphasised that the localization of the eddy
viscosity is of importance for modelling nonlinear waves� In contrast
 a global eddy

�	



viscosity would smear the asymmetry and skewness of the breaking waves in a non�
physical manner�

We de�ne eddy viscosity as

� � B��j�h� ��r�Mj ����

in which � is a mixing length coe�cient with an empirical value of � � ���� The
quantity B that controls the occurrence of energy dissipation is given by

B �

��	
�


�� �t � ���t
�t
��t
� �� ��t � �t � ���t
�� �t � ��t

����

In analogy to the "roller# model by Sch!a�er et al� ������
 we determine the onset
and cessation of wave breaking using the parameter
 ��t 
 which is de�ned as

��t �

�
�
�F 	
t � t � T �

�
�I	
t � t�t�

T �
��

�F 	
t � �

�I	
t �� � � t� t� � T �

����

where T � is the transition time
 t� is the time when wave breaking occurs
 and t� t�
is the age of the breaking event� The value of �

�I	
t varies between ����

p
gh and

��	�
p
gh
 while the values of �

�F 	
t 
 and T � are ����

p
gh
 and �

q
h�g
 respectively� The

construction and veri�cation of the breaking model was detailed by Kennedy et al�
������� The lower limit of �

�I	
t is found to be more suitable to bar�trough beaches

while the upper limit gives optimal agreement for waves breaking on monotone sloping
beaches� Chen et al� �����b� described the implementation and veri�cation of the
breaking model in two horizontal dimensions�

��� A Treatment of Moving Shorelines

Instead of tracking the moving boundary during wave runup�run�down on the beach

we treat the entire computational domain as an active  uid domain by employing an
improved version of the slot or permeable�seabed technique proposed by Tao ���
�

��
�� for simulation of runup� The original slot technique has been used by Madsen
et al� ������ in a Boussinesq model formulated in terms of mass  ux and free surface
elevation� The basic idea behind this technique is to replace the solid bottom where
there is very little or no water covering the land by a porous seabed
 or to assume
that the solid bottom contains narrow slots� This allows the water level to be below
the beach elevation�
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The replacement of the solid bottom by narrow slots results in a modi�cation of the
mass equation �i�e� ��� and ����
 where

	 �

�	

 � � ��� ��e

�
���z��

h� � � � z�

�� � � z�
����

and

� �

���	
��


��� � h�� �
����	h�

�

�
e
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���z��

h� � e
��

�h��z��
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� � � z�
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����	h�

�

�
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�h��z��
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� � � z�

����

Here � is the relative width of a slot with respect to a unit width of beach
 � is the
parameter for the smooth transition from unity to �
 and h� is the o�shore water
depth where a slot begins�

Madsen et al� ������ showed that
 even though a very narrow slot width is used
 there
is still about a ten percent error in the computed maximum runup in comparison with
the analytical solution by Carrier and Greenspan ����
�� This is attributed to the
additional cross�sectional area introduced by the narrow slot because the maximum
runup is very sensitive to the total volume of mass at the runup tip� In contrast to
Tao�s ���
�� formulation
 which does not conserve mass in the presence of a slot
 we
retain an equivalent cross�sectional area of a unit width of beach
 leading to improve�
ment in the simulation of runup as shown Kennedy et al� ������� The resulting z�

may be expressed as

z� �
zs

�� �
� h�

�
�

�� �
�

�

�

�
��	�

in which zs is the elevation of the solid seabed�

The optimal values of � and � are found to be ����� and 
� �Kennedy et al�
 �����

respectively
 which give the best agreement with the analytical solution by Carrier and
Greenspan ����
�� For simulations of wave runup on steep slopes
 however
 a slightly
larger slot width and a localized �lter may be needed to avoid numerical instability�
Chen et al� �����b� veri�ed the Boussinesq model with the improved permeable�
seabed technique against the laboratory experiment on solitary wave runup on a
circular island described by Liu et al� ������� Good agreement between the computed
and measured maximum runup was found�

��� Subgrid Turbulent Mixing

Boussinesq models are based on vertically�integrated mass and momentum equations�
However
 the grid size involved with the simulation of surface waves is usually smaller

�




than the typical water depth� The horizontally�distributed eddy viscosity resulting
from subgrid turbulent processes may therefore become an important factor in u�
encing the  ow pattern of the wave�generated current �eld� In the absence of the
subgrid model in the governing equations
 the underlying current �eld generated by
wave breaking may become so chaotic that no realistic  ow pattern can be recognized�
Thus
 we utilize the Smagorinsky�type subgrid model �Smagorinsky ��	�� to account
for the e�ect of the resultant eddy viscosity on the underlying  ow�

Fbs �
�

h� �

�
��s��h � ��u��x�x �

�

�
��s���h� ��u��y � ��h � ��v��x��y

�
����

Gbs �
�

h � �

�
�

�
��s���h� ��v��x � ��h � ��u��y��x � ��s��h� ��v��y�y

�
��
�

where �s is the eddy viscosity due to the subgrid turbulence�

�s � cm � x� y
�
�Ux�

� � �Vy�
� �

�

�
�Uy � Vx�

�
� �
�

����

in which U and V are the velocity components of the time�averaged underlying current
�eld
 �x and �y are the grid spacing in the x and y directions
 respectively
 and cm
is the mixing coe�cient with a default value of ���� In the course of simulation
 we
obtain the underlying current �eld by averaging the instantaneous velocity over two
peak wave periods and update �s accordingly�
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� NUMERICAL MODEL

This section details the numerical solution techniques used to obtain solutions of the
system of model equations described in the previous section� This numerical approach
provides the foundation for the FUNWAVE model� The programs themselves are
described in the following section�

��� Finite Di	erence Scheme

Numerical solutions of Boussinesq equations can be signi�cantly corrupted if trunca�
tion errors
 arising from di�erencing of the leading order wave equation terms
 are
allowed to grow in size and become comparable to the terms describing the weak
dispersion e�ects� Many schemes developed to solve Boussinesq equations use the ar�
ti�ce of explicitly subtracting out terms comparable to the leading order truncation
errors
 in order to move the unbalanced remaining errors to a higher order than the
nonlinear and dispersive e�ects �Madsen � Warren
 ��
�� Nwogu
 ����� Rygg
 ��

��

In the present model
 we take the somewhat di�erent approach of using a higher�order
scheme in order to perform computations� A composite �th�order Adams�Bashforth�
Moulton scheme �utilizing a �d�order Adams�Bashforth predictor step and a �th�order
Adams�Moulton corrector step� is used to step the model forward in time� Terms
involving �rst�order spatial derivatives are di�erenced to O�$x�� accuracy utilizing
a �ve�point formula� All errors involved in solving the underlying nonlinear shallow
water equations are thus reduced to �th order in grid spacing and time step size�
Spatial and temporal di�erencing of the higher�order dispersion terms is done to
second�order accuracy
 which again reduces the truncation errors to a size smaller
than those terms themselves� No further back�substitution of apparent truncation
error terms is performed�

The resulting model scheme
 as detailed below
 was initially described in Wei and
Kirby ������ and was subsequently extended to include fully nonlinear e�ects by Wei
et al �������

�
�
� Time�di�erencing

The arrangement of cross�di�erentiated and nonlinear time derivative terms on the
right hand side of equations �����	� makes the resulting set of left�hand sides purely
tridiagonal� The governing equations are �nite�di�erenced on a centered grid in x �
i$x� y � j$y� t � n$t� Level n refers to information at the present
 known time
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level� The predictor step is the third�order explicit Adams�Bashforth scheme
 given
by

�n
�i�j � �ni�j �
$t

��

h
���E ��ni�j � �	�E ��n��i�j � ��E ��n��i�j
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����G��t�

n
i�j � �	��G��t�
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n��
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where

E � � E � �E� � f�x� y� t� ����

F � � F � ��F� � F t� � Fbr � Fb � Fsp ����

G� � G� ��G� �Gt� �Gbr �Gb �Gsp ����

All information on the right hand sides of ���� � ���� is known from previous cal�
culations� The values of �n
�i�j are thus straightforward to obtain� The evaluation of
horizontal velocities at the new time level
 however
 requires simultaneous solution of
tridiagonal matrix systems which are linear in the unknowns at level n � �� Specif�
ically
 for a given j
 un
�i�j �i � �� �� ����M� are obtained through tridiagonal matrix
solution� Similarly
 vn
�i�j �j � �� �� ���� N� are solved by a system of tridiagonal ma�
trix equation for given i� The matrices involved are constant in time and may be
pre�factored
 inverted and stored for use at each time step�

After the predicted values of f�� u� vgn
�i�j are evaluated
 we obtain the corresponding
quantities of fE �� F �� G�gi�j at time levels �n� ��� �n�� �n� ��� �n� ��
 and apply the
fourth�order Adams�Moulton corrector method
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From the de�nition
 we see that the calculation of F t and Gt at certain time level
requires the corresponding values of ut and vt� Also
 the terms �F��t and �G��t involves
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time derivatives� De�ning quantity w as

w � fu� v� F�� G�g ����

then its time derivatives for predictor stage are
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For the corrector stage
 we evaluate wt according to
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By substituting the �F��t and �G��t into the equations ����
 ����
 ���� and ��
�
 the
last terms in these equations reduce to
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where w � fF�� G�g�

The corrector step is iterated until the error between two successive results reaches a
required limit� The error is computed for each of the three dependent variables �
 u
and v and is de�ned as

$f �

i�M�j�NX
i���j��

jfn
�i�j � f �i�jj
i�M�j�NX
i���j��

jfn
�i�j j
�	��

where f � f�� u� vg
 fn
� and f � denote the current and previous results
 respectively�
The corrector step is iterated if any of the $f �s exceeds ���� or ����� For "cold start#
running of the model
 the denominator in �	�� is zero initially
 which will result in
in�nite value of $f � To eliminate this problem
 we �rst compute the corresponding
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denominator� If value of the denominator is smaller than a small value �say
 �����

then only numerator from �	�� is used for iteration errors�

For weakly nonlinear case
 the scheme typically requires no iteration unless problems
arise from boundaries
 or inappropriate values for $x�$y and $t are used� For strong
nonlinearity
 however
 the model tends to take more iterations� Further analysis
shows that the iterated results oscillate around the desired solution� To increase
the convergence rate
 we apply an over�relaxation technique to the iteration stage�
Writing the previous and current iterated values as f �i�j and fi�j
 then the adjusted
value f ri�j for over�relaxation is given by

f ri�j � ��� R�f �i�j �Rfi�j ����

where R is a coe�cient which is in the range of ��� ��� In all computations
 we found
that R � ��� gave quite satisfactory results�

�
�
� Spatial di�erencing

For �rst order spatial derivatives
 the following �ve�point di�erence schemes are used

�wx���j �
�

��$x
����w��j � �
w��j � �	w��j � �	w��j � �w��j� ����

�wx���j �
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where w � f�� u� vg
 Mk � M � k�k � �� �� �� ��
 and M is the total number of grid
point in x direction�

For second order derivatives
 we use three�point di�erence schemes

�wxx�i�j �
wi
��j � �wi�j � wi���j

�$x��
��	�

�i � �� �� � � ��M � ��

Similar expressions can be obtained for derivatives with respect to y� For mixed
derivatives
 we use

�wxy�i�j �
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��j��
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��� Boundary Conditions

To obtain solutions to wave propagation over a �nite domain
 appropriate boundary
conditions have to be speci�ed in the numerical model� Two kinds of boundary
conditions are used in the model
 i�e� total re ected wall and sponge layer� Waves
are generated inside the domain by a source function technique which was described
in section ����

�
�
� Wall Boundary

For a perfectly re ecting vertical wall
 the horizontal velocity normal to the wall is
always zero� The corresponding values of surface elevation and tangential velocity
 in
theory
 could be obtained from the governing equations� However
 numerical imple�
mentation for the latter is cumbersome and instability always occurs for our testing
cases� Here we adapt the conditions of specifying the normal derivatives of surface
elevation and tangential velocity as zero �Wei and Kirby
 �����
 which is quite simple
yet accurate to the order of standard and extended Boussinesq equations� Figure �
shows the de�nition of computational domain� Grid numbers in x and y directions
are represented by integer i � �� �� �� � � ��M and j � �� �� �� � � �� N � Assuming a wall
is located in the right end of the domain �i�e� at i � M�
 then the corresponding
boundary conditions are given by

uM�j � � ��
�

��x�M�j � � ����

�vx�M�j � � �
��

�j � �� �� �� � � �� N�

Applying �ve�point o��center �nite di�erence to equations ���� and �
��
 we have

wM�j �
�

��
��
wM��j � �	wM��j � �	wM��j � �wM��j� �
��

where w � f�� vg� Similar expressions can be obtained for walls at other locations�

�
�
� Absorbing Boundary

There are several types of absorbing boundary condition which allows waves to prop�
agate out of the domain with minimum re ection� A sponge layer boundary condition
is used here since it is able to damp wave energy for a wide range of frequencies and
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Figure �� De�nition for computational domain

directions� Although extra grid points are needed
 it is justi�ed to apply sponge layer
due to the decreasing cost of computer storage and the stability of the numerical
model�

To absorb wave energy
 arti�cial damping terms Fsp and Gsp are added to the right
hand side of momentum equations ��� and �	�
 respectively� The damping terms are
de�ned as

Fsp � �w��x� y�u� w��x� y��uxx � uyy� � w��x� y�

r
g

h
� �
��

Gsp � �w��x� y�v � w��x� y��vxx � vyy� � w��x� y�

r
g

h
� �
��

where w�
 w� and w� are functions for three di�erent kinds of damping mechanism

which were referred to as Newtonian cooling
 viscous damping
 and sponge �lter

respectively �Israeli and Orszag
 ��
���

Assuming that there is only one sponge layer on the right end of the domain �see
Figure ��
 i�e�
 from x � xs � �is� ��$x to x � xl � �M � ��$x� Then at the range
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of xs � x � x�
 wi�x� y� �i � �� �� �� are zero� At the range of xs � x � xl
 wi�x� y�
�i � �� �� �� are de�ned as

wi�x� y� � ci�f�x� �
��

where ci�i � �� �� �� are constant coe�cients corresponding to the three damping
functions� Israeli and Orszag ���
�� claimed that sponge �lter is the best among the
three damping terms for an open boundary condition� However
 from our numerical
experiment for closed boundary
 we found that Newtonian cooling work the best� The
notation � in equation �
�� is the frequency of waves to be damped
 and f�x� is a
smooth monotonically increasing function varying from � to � when x varies from xs
to xl� Function f�x� is de�ned as

f�x� �
exp��x� xs���xl � xs��

� � �

exp���� �
� xs � x � xl �
��

The width of the damping layer �i�e� xl � xs� is usually taken to be two or three
wave lengths� Similar expressions can be obtained for sponge layers on three other
ends of the domain� The �nal representation of functions wi�x� y� �i � �� �� �� are the
summation of all sponge layers�

��� Numerical Filtering

Due to nonlinear interaction in the model
 higher harmonic waves will be generated
as the program runs� These super�harmonic waves could have very short wavelength
�the minimum wavelength for given grid resolution is twice of the grid size�� For such
short wave components
 the present Boussinesq model �even with improved dispersion
relation in intermediate water depth� is not valid to apply because of the large depth
to wavelength ratio� In addition
 the magnitude of these short waves usually grows
rapidly once they are generated and eventually causes the blowup of the model itself�

One e�ective way to eliminate such undesired short waves is to apply a numerical �lter
in the model� Shapiro ������ described in detail the method of weighted average and
derived expressions for several orders of �lters� Here we adopt the expression of
Shapiro for a �th order �lter which determines a new value at each grid point by
using the original values at � adjacent points�

Z�

i �
�

��	
��
	Zi � �	�Zi
� � Zi���� �
�Zi
� � Zi���


�Zi
� � Zi���� �Zi
� � Zi���� �
	�

where Z � f�� ug represents the original values which consist of long and short
wave components
 Z� represent the new values with short wave being �ltered out�

�	



The response function for the above ��point �lter is represented by the ratio of the
smoothed to unsmoothed amplitudes

R � �� sin��
k$x

�
� � �� sin��


L

$x
� �
��

where k is the wavenumber
 $x the grid size
 and L the corresponding wave length�
Figure � shows the response function of the �lter with respect to the ratio of wave�
length to grid size� Waves with wavelength twice of the grid size are �ltered out
completely since the corresponding response function R is zero� As the wave length
increases
 however
 the value of R increases �with asymptotic value of ��
 indicating
that the e�ect of �ltering decreases for longer waves�
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Figure �� Response function of the ��D � point �lter�

It is straight forward to obtain an expression for a ��D �lter by applying equation
�
	� to �rst the x and then the y direction� However
 it will be cumbersome to write
the corresponding ��D formula and code it in the program since the formula contains
� � � � 
� neighboring points for one �ltered point� Instead
 the ��D formula is
employed twice
 with the �rst in the x direction for all y values and the second in the
y direction for all x values� The corresponding response function for the ��D case is

R�l� �� �
h
�� sin��l$x���

i h
�� sin���$y���

i
�

�

where l and � are the wavenumbers in x and y directions
 respectively
 $x and $y
are the grid sizes� Denoting Lx and Ly to be the wavelengths in x and y directions
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then the above response function can be rewritten as

R �
n
�� sin��
��Lx�$x��

o n
�� sin��
��Ly�$y��

o
�
��

Figure � shows the response function of the �lter with respect to the ratios of wave�
lengths to grid sizes� Again
 waves with wavelengths twice the grid size are �ltered
out completely since the corresponding response function R is zero for these waves�
As wavelength increases
 the �ltering e�ect is reduced�
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Figure �� Response function of the ��D �� � point �lter

The use of the above numerical �lter should be kept to minimum
 since a fraction
of long wave energy is also �ltered out every time the above formula is applied� In
the testing cases � and �
 the numerical �lter is applied every ��� time steps �� wave
periods� and good results are obtained�
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� USER�S MANUAL

The Boussinesq model developed here is written in the Fortran �� language and in
theory should be able to run on all type of computers which have Fortran �� compilers�
We have been running the program on three types of computers �Sun workstations

SGI workstations and a Cray J��� and have not found any machine related problems

except for di�erent record length for binary data on the SGI machines� To take ad�
vantage of the graphic capability for SGI machines
 special subroutines for animation
are written to plot wave �eld as computation goes on� Graphic Library �GL� routines
for SGI machines are used in this case� Detailed description can be found in section
��	�

In general
 two�dimensional programs can be used to simulate one�dimensional cases
of wave propagation� However
 purely ��D programs are much simpler to code and
much faster to run due to the fact that ��D programs include less terms and do not
require a minimum of �ve grid points in the y direction as does the ��D program�
Therefore
 we develop both ��D and ��D programs for simulating corresponding cases
of wave propagation�

Although the ��D and ��D programs are separate
 the basic structure of these two
programs is the same� In the following
 we will describe the model for the ��D case
in general and point out the di�erence for the ��D program�

��� Revision History

Version ��� represents the initial release of the model�

��� Program Outline and Flow Chart

The numerical model for the ��D case consists of a main program and �� subroutines�
The main program consists of a do loop for time stepping� Inside the loop
 various
subroutines are called to compute the corresponding values of f�� u� vg at each time
step
 using predictor or corrector formulas given in section ���� Figure 	 shows the
 ow chart for the main program�

A short description of each routine follows�

�� init� Called by main program
 this routine reads input data �les and com�
putes constants and arrays which will be used by the main program and other
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n+1

1 1to evaluate B={E’,F’,G’,F , G }
call subroutines eval_fg, eval_e

||x||

||x*-x||
>10 ?

- 4

n+1

1 1to evaluate B={E’,F’,G’,F , G }

do it = 1, nt

call subroutine             for initilizationinit

ite = 0

unsol, vnsol, etsol
to compute x = {   , u, v }

call subroutines 
η n+1

x* = x,     ite = ite + 1

call subroutines unsol, vnsol, etsol
to compute x = {   , u, v }

n+1η

ite > 10 ?
Yes

No

No

Corrector

Preditor

eval_fg, eval_ecall subroutines 

to update x, B ;  to record resutls
etcto filter if needed;   

continue

stop

Yes

Figure 	� Flow chart of the main program
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subroutines�

�� tridag� Called by init
 this routine obtains the tridiagonal matrix for solving
velocities u and v�

�� ludec� Called by init
 this routine decomposes the tridiagonal matrix for obtain�
ing velocities u and v�

�� wavenb� Called by init
 this routine computes wavenumbers for given water
depth and angular frequency�

�� etsol� Called by main program
 this routine computes surface elevation � at new
time step� It calls subroutine bcet to obtain boundary values of ��

	� unsol� Called by main program
 this routine computes x�direction velocity u at
new time step� It calls subroutine bcu to obtain boundary values of u�

�� vnsol� Called by main program
 this routine computes y�direction velocity v at
new time step� It calls subroutine bcv to obtain boundary values of v�


� bcet� Called by etsol
 this routine computes boundary values of ��

�� bcu� Called by unsol
 this routine computes boundary values of u�

��� bcv� Called by vnsol
 this routine computes boundary values of v�

��� error� Called by main program
 this routine computes errors of �� u� v for suc�
cessive iteration�

��� printing� Called by main program
 this routine writes out computational results
into output �les�

��� �tr� Called by main program
 this routine �lters out short waves which may
cause instability�

��� eval fg� Called by init and main program
 this routine computes the quantities
de�ned in the right hand side of momentum equations
 i�e�
 F � �F�
 F�
 F

t

G� �G�
 G�
 G

t�

��� eval e� Called by init and main program
 this routine computes E � �E��

�	� pre eval� Called by eval fg and eval e
 this routine computes common terms in
E
 F 
 G
 F�
 F�
 G�
 F

t
 Gt� These common terms are� uxy
 vxy
 �hu�xy
 �hv�xy

�ux � vy�x
 �ux � vy�y
 ��hu�x � �hv�y�x
 ��hu�x � �hv�y�y�

��� eval e�� Called by eval e
 this routine computes E��

�
� eval f�g�� Called by eval fg
 this routine computes F� and G��
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��� eval utvt� Called by eval fg
 this routine computes ut and vt and calls subroutine
eval ftgt to compute F t and Gt�

��� eval ftgt� Called by eval utvt
 this routine computes F t and Gt�

For ��D programs
 subroutines vnsol and bcv will not exist� In addition
 variables
with y dependent such as G
 G�
 G�
 G

t and F� will be zero� Computation in ev�
ery subroutine will be reduced more than half due to the absence of variation in y
direction�

��� Program Input

There are four input data �les to be read by subroutine init� The �rst �le con�
sists of control parameters and is named funwave�d�data for ��D programs and fun�
wave�d�data for ��D programs� With the use of intrinsic function NAMELIST in the
program
 variable name and its corresponding data can be put together� The logical
device number for this �le is chosen as � and the form of the �le is ASCII�

The other three input �les are water depth data
 initial wave �eld data
 and time
series of source function amplitude
 respectively� Their names are represented by f�n

f�n and f�n which are speci�ed in funwave�d�data or funwave�d�data� Binary format
is used for these three �les to increase I�O speed for ��D programs while ASCII
format is used for ��D programs� Since the record length of data for binary format in
SGI computer is di�erent from other machines
 a control parameter imch is used in
funwave�d�data or funwave�d�data to adjust for di�erent computers� In the following

more detailed descriptions of each input �le such as de�nition of parameters and how
to generate such �les are given�

�
�
� Input �le �� funwave�d�data or funwave�d�data

The �le consists of control parameters to be used through the programs� These control
parameters are de�ned as�

� ibe

Control parameter for di�erent types of Boussinesq equations� ��� ibe � � is
for Nwogu�s ������ extended Boussinesq equations� ��� ibe � � for the fully
nonlinear Boussinesq equations of Wei et al� ������� ��� ibe � � for Peregrine�s
���	�� Boussinesq equations� ��� ibe � � for nonlinear shallow water equations�
and ��� ibe � � is for linearized Nwogu�s equations�

��



� imch

Identi�cation number for di�erent types of computer due to di�erence in record
length of data for binary format� ��� imch � � is for SGI workstations� ���
imch � 
 is for Sun and Cray J���

� ianm

Identi�cation number for the use of online animation for the ��D code� ianm � �
is for animation on SGI machines� ianm � � is no animation�

� a�

Input wave amplitude in meters� For Gaussian hump testing case
 it is the initial
wave height in the center of the hump� For regular waves over submerged shoal
testing cases
 it is the incident wave amplitude� For random wave generated by
speci�ed spectrum
 it is the root�mean�square wave amplitude� No need in the
case of a given time series of free surface elevation�

� h�

Constant water depth in meters over the wave generation region�

� tpd

Wave period for monochromatic waves
 dominant wave period for random waves�

� dx� dy

Grid size in meters for x and y directions
 respectively� There is no need for dy
in ��D programs�

� dt

Time step size in seconds
 dt � ���dx�
p
ghmax�

� mx� ny

Numbers of grid points in x and y directions
 respectively� There is no need for
ny in ��D programs�

� nt

Number of time steps for the program to run�

� itbgn� itend� itdel

The beginning
 ending and interval numbers of time step to store spatial maps
of � or time�averaged velocity�

� itscr

Number of time steps between the output of a partial list of computed results
on the screen�

��



� itftr

Number of time steps between application of the numerical smoothing �lter�

� theta

Input angle �in degrees� between wave direction and x direction� No need in
��D program�

� cbkv

Coe�cient allowing the variation of parameter for the breaking scheme� cbkv�
�
�I	
t � �see Section ��� for the description of the parameter��

� delta

Slot width relative to a unit width of beach� delta � ������ �����

� slmda

Parameter controlling the slot shape� slmda � ��� 
��

� isltb

Inception of a slot in the x direction�

� islte

The end of a slot in the x direction�

� isrc

Index number for the center line of source function in x direction� Source
function is not valid if isrc � ��

� jsrc

Index number for the center line of source function in y direction� No need for
��D programs�

� swidth

Ratio of source function width W to half wavelength L��� swidth is a constant
of O����

� cspg� cspg�� cspg�

Coe�cients for three di�erent kinds of sponge layers� The usual values for all
the testing cases is cspg � ��� cspg� � �� cspg� � ��
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� ispg	
�

Control parameters for sponge layer widths in four boundaries� The sponge
layers are in the grids from i � � to i � ispg���
 from i � mx � ispg��� � � to
i � mx
 from j � � to j � ispg���
 and from j � ny � ispg��� � � to j � ny�
Only the �rst two elements in ispg are used in ��D programs�

� ngage

Total number of wave gages in computing domain where time series of � is
recorded� The coordinates of these points are de�ned by ixg and iyg� The
maximum value of ngage is �� in the program and could be increased by chang�
ing the prede�ned size for arrays ixg and iyg�

� ixg	���� iyg	���

A pair of grid index which de�ne the wave gages where time series of � are
recorded� The corresponding coordinates for these points are �xk� yk��k �
�� �� ���� ngage� with xk � �ixg�k�� �� 	 dx and yk � �iyg�k�� �� 	 dy�

� itg	
�

Time steps where spatial pro�les of � are stored�

� f�n� f�n� f�n

Names of input data �les� ��� f�n is for water depth� ��� f�n is for initial wave
�eld� and ��� f�n is for time series of source function amplitude for random
wave input�

� f
n� f�n� f
n� f�n

Names of output �les� ��� f�n is for time series of � at gages speci�ed by grid
index ixg and iyg� ��� f�n is for time series of other quantities such as water
volume or u
 v� ��� f	n is reserved for spatial pro�les speci�ed by time step itg�
��� f�n is for spatial pro�les of � or time�averaged velocity components at the
time steps controlled by itbgn� itend� itdel�

� cbrk

Coe�cient for wave breaking as in equation ����� The typical value is cbrk �
����

� ck bt

Coe�cient for bottom friction formulated by the quadratic law
 which is ap�
peared in equation ����� The typical value is ck bt � ���� ���� to ���� �����
It is equal to zero for smooth bottom�
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� c dm

Coe�cient for the subgrid mixing model� The typical value is c dm � ���� For
non�breaking waves
 set c dm � ����

� isld

isld � � is for the simulation of runup on a conical island in Liu et al� �������
A sponge layer is placed inside the island and a subroutine is called to compute
the maximum runup height on the island when isld � �� In the case of an open
coast
 set isld � ��

� idout

idout � � leads to the output of time�averaged velocity �over two peak wave
periods� in f�n� idout � � leads to the output of free surface elevation in f�n�

� idft

idft�� imposes a local �lter along lateral boundaries if blow�up occurs there�
idft�� indicates that no local �lter is used�

� itide

Control parameter for tidal e�ect� For itide � � tidal e�ect is turned on as
speci�c by tideco de�ned bellow� For itide � �
 no tidal e�ect is turned on�
Currently this parameter is only implemented in ��D programs�

� tideco	��

Coe�cients of parabolic curve �tting for tidal e�ect in ��D model�

�
�
� Input �le �� f�n

This �le consists of water depth data which is needed for the Boussinesq model to run�
The depth data could generated by Fortran program depth�f
 if the bottom geometry
could be represented by some mathematical formula� The Fortran program depth�f
reads the some of the control parameter �le funwave�d�data or funwave�d�data and
computes the corresponding water depth matrix� In the current version of depth�f
program
 four examples of depth grid can be generated� These four cases of depth
grid correspond to the four example calculations which will be described in Sections
������ The �rst case is combination of a constant depth and a constant slope of ��D�
The other three cases are all ��D
 i�e� constant depth
 topography of Berkho� et al�
���
�� and topography of shoal experiment of Chawla and Kirby ����	��

Data in f�n is written in the following format�
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open �unit� file � f�n� access � �direct�� recl � imch�ny�

do i � �� mx

write �unit� rec � i� �h�i�j��j���ny�

enddo

�
�
� Input �le �� f�n

This �le consists of initial values of surface elevation � and horizontal velocity com�
ponents u and v for each point in the computational domain� The Fortran program
to generate the initial wave data �le is called initw�f� For the test case of evolution
of initial Gaussian shape water column
 the surface elevation � is obtained from the
given formula
 and the velocity components of u and v are zero� For the other testing
cases of ��D random wave propagation and ��D regular wave shoaling
 all variables
of �
 u and v are set zero�

Data in f�n is written in the following format�

open �unit� file � f�n� access � �direct�� recl � 	�imch�ny�

do i � �� mx

write �unit� rec�i� �ui�i�j��j���ny�� �vi�i�j��j���ny�� �eti�i�j��j���ny�

enddo

�
�
� Input �le �� f�n

This �le consists of time series of source function amplitude s�t� which is used to gen�
erate desired waves for the model� The Fortran �le to generate s�t� is called source�f�
In order to e�ciently generate random waves with di�erent direction components
 at
least two crossing source lines are needed� The ��D version of source�f is still under
development� The ��D version is named �dsource�f and has been tested to generate
desired random waves successfully� In program �dsource�f
 two methods can be chosen
to generate time series of source function amplitude� The �rst is by speci�ed power
spectrum of � and the second is by measured time series of � at the corresponding
location� Due to the special requirement of the program
 a separate input data �le
named �dsource�data is required to run �dsource�f� The parameters in �dsource�data
are de�ned as�

� imeth

Control parameter for di�erent methods to generate time series of source func�
tion magnitude� For imeth � �
 input spectrum of � is required� For imeth � �
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input time series of measured � is used�

� f�� f�

The lowest and the highest frequency components to be used in the spectrum
of ��

� nf

Number of frequency components between f� and f��

� fnin

Name of the input time series of ��

� ntd

Number of time step in the input time series of ��

� dtd

Time step in seconds for the input time series of ��

� nttrans

Number of time step to perform FFT transform for each segment of data� The
number should be power of ��

� hscale

Coe�cient to convert the input � into meters�

� itide� tideco	��

Tidal e�ect parameters which are the same de�nition as in funwave�d�data�

��� Program Output

There are total nine output �les from the model
 eight of which are for surface el�
evations �� The �rst �le is time series of � at locations speci�ed by ixg and iyg

with the total number of points speci�ed by ngage� The data dimension of the �le is
ngage� nt� The second output �le is time series of other quantities
 such as velocity
components u and v� Binary format are used to store these �les to increase the I�O
speed
 especially for post�processing Matlab programming�

The next six �les are spatial pro�le of � at time steps speci�ed by itg�	�� All these
six �les have the same pre�x f	n for their names� Their post�x names are string
conversion of the corresponding time steps� Data in these six �les have the dimension

�




of mx � ny� Again
 binary format is used to store these six �les so that these data
can be read directly by Matlab low order Input�Output command�

The last data �le is the spatial pro�les for time steps controlled by itbgn� itend� itdel�
Data in this �le have the dimension ofmx�ny�ntn with ntn � �itend�itbgn��itdel�
Binary format is used for this �le that contains either free surface elevation or velocity
components averaged over two peak wave periods as speci�ed by the user through
idout�

As the program runs
 several outputs are shown on the command line screen� For
every itscr time steps
 surface elevation at � corner points
 total mass
 number of
interation
 etc�
 are printed out
 which serves as a running check for the model�

��� Programs to Analyze Output Files

All the �rst 
 output �les are ��D data and can be analyzed directly by the plotting
software Matlab� Time series of � at the speci�ed locations and spatial pro�les of �
at time steps can be obtained directly �both ASCII and binary forms� from Matlab�
Following standard procedures
 it is straightforward to plot the results or to perform
data analysis such as spectrum computation and other statistics�

The last output data �le f�n is in a ��D array and in binary format� Depending on
the domain dimension and the number of time steps at which data are stored
 the size
of the �le can be quite large� We write Fortran programs to decompose the ��D data
to ��D according to speci�c time steps� Program b�dp��f reads the output data �le
f�n and write out a number of �les
 each of which corresponding to the spatial pro�le
of � at a speci�ed time step� For regular wave propagation
 wave height distribution
along the domain is desired to compare with experiment data� And program b�dp��f
reads the �le f�n and computes the averaged wave height by zero crossing method
for the entire grid points�

For the output of time�averaged velocity components in f�n �i�e� idout � ��
 a
program b�dp��f may be used to extract the information of the wave�induced unsteady
current at a given time or averaged over a long period of time�

��� Implementation of Animation Graphics

For SGI machines and other computer systems with animation software �i�e�
 Graphic
Library for SGI
 OpenGL for other computers�
 it is quite useful to implement anima�
tion to visualize computing results� Real time animation as the program is running
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provides an e�cient way to detect possible cause of model blowup from coding error
or boundary problem�

In the beginning of developing the model
 we wrote subroutines utilizing Graphic
Library �GL� provided by SGI machines� To extend the animation to other computer
systems
 these subroutines are being transferred into OpenGL� In the present version

only GL is used to described animation as follows�

Since it is relatively faster for the ��D programs to run and the e�ect of slowing down
the computation by adding animation to the Boussinesq model is not apparent
 we
provide the option of turning on animation as the ��D Boussinesq model is running�
There are three subroutines for animation which are all written in C� The �rst sub�
routine is called plotinit�c which initializes the SGI Graphic Library such as window
size and camera position� The second is called plot�c which is called by the main
program to plot the surface elevation � at the speci�ed time step� The third is called
plotfn�c which closes down the graphic windows� The option of turning on anima�
tion is provided by using the make�le Make�le� To turn o� animation for non�SGI
computers
 we should use the make�le Make�lebg� The function of animation can be
switched o� on SGI machines by setting ianm � � in the input �le funwave�d�data�

In the ��D case
 the computation of the Boussinesq model takes quite a long time
for SGI machine
 even with smaller grid numbers �e�g� �� � ���� Therefore
 adding
animation to the ��D model would be less e�ective� Instead
 we write out data of � as
much as possible �limited by machine capacity� to the �le f�n� A separate program
which consists of SGI Graphics Library routines is used to read the data f�n and to
plot animation image of the computing results�
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� EXAMPLE CALCULATIONS

The numerical model has been applied to compute wave �elds for several cases of wave
propagation� In the following
 seven examples of running the model are described�
The �rst two are for ��D programs to simulate wave propagation over a planar beach�
The third case is the evolution of an initially Gausaian elevation in a rectangular
basin� The last four examples are regular wave propagation over submerged shoals and
adound a conical island� Agreement between model results and available experimental
data is found to be quite reasonable�

��� Wave Propagation over a Planar Beach� Mase 
 Kirby
�����


To study random�wave properties of shoaling and breaking
 Mase and Kirby ������
conducted a laboratory experiment of random wave propagation over a planar beach�
Figure � shows the experiment layout
 where a constant depth on the left connects to
a constant slope on the right� Two sets of random waves with peak frequencies ��	Hz
�run�� and ���Hz �run�� are generated by wavemakers on left end and propagate
through the  at bottom and then over the slope� Starting at the toe
 �� wave gages
are deployed along the slope at locations whose water depths are h � ��
 ��
 ��

��
 ��
 ����
 ��
 ����
 ��
 ���
 �
 ��� cm� Time series of surface elevation � at these
locations are collected simultaneously for about �� minutes for run� and �� minutes
for run��

47 cm

10 m

Wave Paddle Wave Gauges

1 2 3 12

1:20

Figure �� Experiment layout of Mase � Kirby �������
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The ��D model is used to simulate the wave propagation� Here we present the model
results for run� and compare them with the experimental data� The dispersion
coe�cient kh for the peak frequency wave in run� is about �
 which is out of the
validity range for the standard Boussinesq equations� However
 as shown in the
following
 the extended Boussinesq model is applicable for this case as good agreement
between the numerical results and experimental data is observed�

The closest gage to the wavemaker is at the toe with h � ��cm� The measured data of
� at that location is used as an input to the Fortran program �dsource�f to generate
time series of source function amplitude� The input �le for �dsource�f is�


data��

imeth � �


end


data��

f� � �
� f� � �
� nf � ���


end


data��

fnin � �r�d���
dat�

ntd � ����� dtd � �
�� nttrans � ����

hscale � �
��


end

Since the time series of ��t� is used as an input to generate time series of source
function amplitude s�t�
 we chose imeth � �� The parameters in %data� de�ne the
interested frequency range to be modelled� In order to use FFT to perform transform
between time domain and frequency domain data
 the value of nttrans is required
to be power of �� The experimental data of ��t� is divided into �� segments
 each
of which has ���� data� The total number of ��t� used to generate s�t� is ��� ����
� ����	� The time length of the output time series of s�t� is the same as the input
��t�� However
 due to smaller time step dt � ���� �see �le funwave�d�data below�
required to run the wave model
 the total number of data for s�t� is ����	 	 dtd�dt �
��	
��

Owing to the absence of data near the wavemaker
 the computing domain is somewhat
di�erent from the physical domain� The source location for the model is at the
toe �instead of at the wavemaker� where measured data is available� The shoreline
boundary is handled by the permeable�seabed method� Sponge layers are added at
both ends of the domain to absorb wave energy� The depth data �le is generated by
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the program depth�f � The initial wave �eld of � and u are set to zero everywhere by
using the program initw�f �

Figure 
 shows the comparison of time series of � between the model and the mea�
surement for the �� gages at the depths h���
 ��
 ��
 ��
 ����
 ��
 ����
 ��
 ���
 �
 ���
cm� Except for small discrepancies for wave phases and wave heights
 the computed
wave shoaling and breaking agree quite well with the experimental data �most waves
start breaking at the depth h � ��cm��
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Figure 
� Time series comparison of � between model �dashed lines� and data �solid
lines� at �� wave gage locations�

The speci�cation �le funwave�d�data for this case is


data�


ibe � � imch � � ianm � �

a� � �
�� h� � �
�� tpd � �
�

dx � �
��� dt � �
��

mx � ��� nt � 	����

itbgn � � itend � 	���� itdel � ���

itscr � ��� itftr � ���

cbkv � �
	� ck�bt � �
�

��



delta � �
�� slmda � ��
�

isltb � ��� islte � ���


end


data�

isrc � �� swidth � �
�

cspg � ��
� cspg� � �
� cspg	 � �
�

ispg � �� ��

ngage � �	

ixg � ��� ��� ��� ��� ��� 	�� 		� 	�� 	�� 	��

��� �	� � � � � � � � �

itg � �� �� ��� ���� ���� ����


end


data	

f�n � �depth
mskb�

f�n � �initw
data�

f	n � �mskb�r�
data�

f�n � �eta�ts
out�

f�n � �tmp
out�

f�n � �eta�sp
out�

f�n � �eta�xt
out�


end


data�

itide � �

tideco � �
�� �
���e��� ��
	�	�e���


end

As de�ned in the above data �le
 a numerical �lter is applied every ��� time steps if
there is no wave breaking� In the event of wave breaking
 extra �ltering is required in
order to stabilize the model� We de�ne the time step at which wave breaking occurs
as breaking time step
 then the extra numerical �lter is applied for every �� breaking
time steps� We run the model for the entire input time series of s�t� and no problem
occurred to stop the program� Time series comparisons for other data segments
between the model results and the experiment data are as good as that of Figure 
�
To further demonstrate the applicability of the model
 we performed third moment
computation for the resulting time series of ��t�� Figure � shows the comparisons of
skewness and asymmetry between the model results and experiment data� The close
agreement proves that the model is capable of simulating wave shoaling and breaking�
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Figure �� Comparison of skewness �o� and asymmetry ��� at di�erent water depths�
Solid lines is experimental data �Mase � Kirby
 ������ Dashed line is numerical
result�

��� Bichromatic�Wave Runup� Mase �����


In a study of frequency downshift in the swash motion
 Mase ������ presented exper�
imental results of bichromatic� wave train runup on a slope� The experiments were
conducted using the same wave  ume and experimental setup as those in Mase and
Kirby ������ described in preceding section� Mase�s laboratory measurements
 includ�
ing shoaling
 breaking and swash motion
 provide good test cases for the veri�cation
of the runup scheme in combination with the wave breaking model�

We chose two typical test cases from Mase�s ������ series of experiments� Each of
them represents a di�erent kind of wave pattern
 or group pattern� The �rst one

named WP�
 contains �ves waves in each wave group with a mean frequency f � ��	
Hz
 while in the second case WP�
 each wave group consists of ten waves with f� ���
Hz� In both cases
 the nonlinear interactions of wave components and the variation
of breaking point in the wave train
 among others cause considerable low frequency
swash oscillations� We use the Boussinesq model incorporated with the improved slot
scheme and the breaking model to simulate these two test cases�
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Incident waves are generated using the source function technique� The measured time
series of free surface at Gauge � near the toe of the slope is used as an input to the
model� The same procedure as described in the preceding section is employed to
prepare the input data �les� Similar to the physical experiment
 no special treatment
is taken to include the bound second harmonics in the incident waves� Due to the
presence of the slot inside the dry beach
 the whole channel is an active computational
domain with two closed boundaries at both ends of the wave  ume� To be able to
resolve superharmonics in the wave train
 the grid size and the time step is chosen
to be ���� m and ���� s
 respectively� With respect to the wave breaking model
 the
parameter 
�

�I	
t 
 is chosen to be the lower limit as described in Section ���� For the

slot scheme
 we use � � �����
 and � � 
��

The speci�cation �le for the case of WP� is as follows


data�


ibe � � imch � � ianm � �

a� � �
��� h� � �
�� tpd � �
����

dx � �
�� dt � �
��

mx � ��� nt � ����

itbgn � ��� itend � ���� itdel � �

itscr � ��� itftr � ���

cbkv � �
�� ck�bt � �
�

delta � �
��� slmda � ��
�

isltb � ��� islte � ���


end


data�

isrc � ��� swidth � �
�

cspg � ��
� cspg� � �
� cspg	 � �
�

ispg � ��� ��

ngage � �	

ixg � ��� 	�� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� � � � � � � �

itg � ��� ���� ���� 	��� ���� ����


end


data	

f�n � �depth
mase�

f�n � �initw
data�

f	n � �wp���
data�

f�n � �eta����
out�

f�n � �tmp
out�

�	



f�n � �eta����
out�

f�n � �etaxt
out�


end


data�

itide � �

tideco � �
�� �
���e��� ��
	�	�e���


end

The speci�cation �le for Case WP� is similar to the case of WP�
 thus it is omitted
here� Comparisons of computed and measured surface elevation for the two test cases
are presented in Figs� �� and ��
 including �� wave gauges along the slope and a
runup gauge� The dashed lines represent the computed results while the full lines are
the measurements� Generally good agreement is found in both test cases�

First
 we notice that the nonlinear shoaling of the bichromatic wave trains is well pre�
dicted by the Boussinesq model� Near the shoreline where wave breaking occurs
 al�
though a slight discrepancy is observed
 the overall agreement is satisfactory between
the computed surface elevation and Mase�s ������ data� Moreover
 the modelled
swash motions are in good agreement with the measurements� The good agreement
demonstrates that the present Boussinesq model with the incorporation of the wave
breaking model and the improved slot technique works reasonably well for the simula�
tion of wave shoaling
 breaking
 and swash oscillation� The true value of the schemes
is their feasible extension to two horizontal dimensions as shown in the following
sections�
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Figure ��� Comparisons of computed �dashed lines� and measured �full lines� free
surface elevation including runup in the case of WP�
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Figure ��� Comparisons of computed �dashed lines� and measured �full lines� free
surface elevation including runup in the case of WP�

��� Wave Evolution in a Rectangular Basin

The complexity of the ��D model requires careful programming and objective testing�
One simple yet e�cient testing case is wave evolution in a closed basin� By providing
initial values of �
 u and v for the �rst three time steps �i �e��it � ��� �� �� to the
model
 we can obtain the subsequent variations of �
 u and v� Analyzing these data
has enabled us to correct coding errors and to discover the property of the model�

First
 we use program depth�f to generate the bathymetric data� Secondly
 program
inite�f is invoked for the generation of initial condition� Unlike other cases for running
the model with a &cold start� condition
 the initial values of � are not zero and are

��



de�ned as

�ki�j � a� 	 exp��
��i� ic�
��$x�� � �j � jc�

��$y���� ����

i � �� �� ����M � j � �� �� ���� N � k � ��� �� �
where a� is the initial height of the Gaussian hump as speci�ed in funwave�d�data �set
a� � � after running initw�f�
 
 is the shape coe�cient �
 � ��� in this case�
 ic and jc
are the grid numbers for the center of the basin in x and y directions
 respectively� The
Gaussian hump water is released in a rectangular basin with dimensions ��m� ��m
and with constant water depth h� � ���m� Due to gravitational forcing
 waves are
generated and propagate out of the center and then are re ected back in the domain
by four side walls� Since no sponge layers are used in this case and there is no wave
breaking
 there should be no energy loss� Though there exist no analytical solutions
or experiment data for this case
 the symmetric characteristics of the basin and initial
conditions should result in symmetric spatial pro�les of �
 which are shown in Figure
��� The symmetric property had been proved to be an e�cient way for checking
coding errors in ��D models�

The corresponding control parameter �le funwave�d�data is�


data�


ibe � � imch � �

a� � �
� h� � �
�� tpd � �
�

dx � �
� dy � �
� dt � �
��

mx � ��� ny � ��� nt � ����

itbgn � �	�� itend � ���� itdel � �

itscr � ��� itftr � ��� theta � �


cbkv � �
� delta � �
� slmda � �
�

isltb � ��� islte � ���


end


data�

isrc � � jsrc � �

cspg � ��
� cspg� � �
� cspg	 � �
�

ispg � � � � �

ngage � �

ixg � � �� �� � ��� ��� � � � �

� � � � � � � � � �

iyg � � �� �� ��� ��� � � � � �

� � � � � � � � � �

itg � � ��� ���� ���� ���� ����

cbrk � �
� ck�bt � �
� c�dm � �
�

isld � � idout � � idft � �

��
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Figure ��� Contour plots of surface elevation at time �a� t��� �b� t���� �c� t���� �d�
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end


data	

f�n � �dpdata
gau�

f�n � �inwdata
gau�

f	n � �srcdata�

f�n � �eta�ts
out�

f�n � �muv�ts
out�

f�n � �etaxy�

f�n � ��tmp�etts�w
out�


end

Notice that the parameter tpd is meaningless in this case
 but it should be larger
than zero� The ratio of initial wave height to water depth is � � a��h� � ���
 which
is quite large� However
 the subsequent wave height to water depth is only about
���
 indicating that nonlinear e�ect is small� The numerical �lter is applied for every
itftr � ��� time steps�

By keeping all parameters in funwave�d�data the same except changing ibe from �
to � �ibe � � corresponds to Nwogu�s equations
 ibe � � to fully nonlinear Boussinesq
model
 ibe � � to standard Boussinesq model and ibe � � to nonlinear shallow water
model�
 we obtained and compared results from these four models� Figure �� shows
the time series comparisons of surface elevation � at the corner point and the center
point of the rectangular domain� The resulting � from nonlinear shallow water model
does not converge and causes the program to stop running at about t � ���� s �or
it � ��
�� due to excessive iteration times� Therefore
 results from nonlinear shallow
water model are not shown in Figure ��� Results of ��t� from other three Boussinesq
models are quite close
 indicating that both e�ects of dispersion and nonlinearity are
weak�

In addition to symmetry of �
 another important property for this case is the conser�
vation of water volume inside the basin� Since a source function is not applied here to
generate waves and the four wall boundaries around the basin prevent the exchange
of water in and out of the basin
 the water volume should remain constant if correct
boundary conditions are used in the numerical model� Figure �� shows time series
comparison of relative error of water volume E
 which is de�ned as as

E�t� �
V �t�� V ���

V ���
����

where V �t� is the total water volume of the Gaussian hump and is obtained at each
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Figure ��� Comparisons of time series of surface elevation � for three models� dashed
line � Nwogu�s model� dash dot line � fully nonlinear Boussinesq model� dot line �
standard Boussinesq model� �a� is at corner point and �b� at center point�

time step by the approximate formula

V �t� � �
�
$x$y

M���N��X
i���j��

��i�j � �i
��j � �i�j
� � �i
��j
�� ����

As shown from Figure ��
 the relative errors E of water volume from three Boussi�
nesq models are all less than �' of the initial values
 indicating that the conservation
property of these models works quite well� The smallest values of E correspond to
the standard Boussinesq model
 where the corresponding wall boundary conditions
described in Section ����� are exact
 due to the use of depth�averaged velocity as a de�
pendent variable� For Nwogu�s model and the fully nonlinear Boussinesq model which
use velocity at the depth z� � �����h as a dependent variable
 the wall boundary
conditions described in Section ����� are only accurate to the order of approximation
for these models� Therefore
 results from these two models are not as good as those
from the standard Boussinesq model�

Although no problems have been found related to the mass conservation properties of
the model for simulation of nearshore wave propagation without wave breaking
 the
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Figure ��� Comparisons of time series of relative error of water volume E for three
models� dashed line � Nwogu�s model� dash dot line � fully nonlinear Boussinesq
model� dot line � standard Boussinesq model�

accumulation of error in the total water volume of the domain may a�ect the com�
putation of breaking�induced wave setup� This error has been removed by correcting
the mass residual in the ��D code� A more formal correction by strictly imposing
the zero� ux condition on closed boundaries will be made in the future release of this
model�

��� Wave Propagation over a Shoal� Berkho	 et al� �����


The experiment conducted by Berkho� et al� ���
�� has served for a number of
years as a standard test for verifying models based on mild slope equation� Correct
reproduction of measured wave heights in this experiment depends on a number
of factors
 including shoaling
 refraction
 di�raction and nonlinear dispersion� In
particular
 the central importance of nonlinearity in the experiment was demonstrated
by Kirby � Dalrymple ���
���

However
 due to large kh values in the experiment �kh � ��� near wavemaker�
 models
based on nonlinear shallow water equations or standard Boussinesq equations are not
appropriate in this situation� However
 with improved linear dispersion property in
intermediate water depth
 the present model based on Nwogu�s extended Boussinesq
equations or the fully nonlinear Boussinesq equations can be applied and give accurate
prediction of the data�

First
 we generate the bathymetric data using program depth�f � The bottom topogra�
phy is shown in Figure ��
 which consists of an elliptic shoal resting on a plane beach
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with a constant slope ����� Bottom contours on the slope are oriented at an angle of
��� to the y axis� Regular waves with period �s and amplitude ����cm are generated
by a wavemaker at x � ���m and propagate across the domain� Experiment data
are collected along 
 transects as shown in the �gure� Two vertical side walls are
located at y � ���m and y � ��m� Detailed information on the geometry may be
obtained in Berkho� et al� ���
�� or Kirby and Dalrymple ���
���
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Figure ��� Bottom topography for experiment of Berkho� et al� ���
��

The computing domain used in the model is the same as in the Figure �� except for
two sponge layers with width � m and � m sitting behind wavemaker and on the end
of the beach� Instead of shoreline boundary
 a minimum water depth of ���� m is used
in the model� The source function for generating the corresponding monochromatic
wave is located at the wavemaker� The model is run with a cold start� Again
 the
data �le for the inital condition is generated by the use of program initw�f � We give
the speci�cation �le funwave�d�data as follows�


data�


ibe � � imch � �

a� � �
��	� h� � �
�� tpd � �
�

dx � �
�� dy � �
� dt � �
��

mx � ��� ny � ��� nt � ����

��



itbgn � 	��� itend � ���� itdel � �

itscr � ��� itftr � ��� theta � �
�

cbkv � �
� delta � �
� slmda � �
�

isltb � ��� islte � ���


end


data�

isrc � �� jsrc � �

cspg � ��
� cspg� � �
� cspg	 � �
�

ispg � �� �� � �

ngage � ��

ixg � ��� ��� ��� 	�� 	�� 	�� ��� ��� ��� 	��

	�� 	�� ��� ��� � � � � � �

iyg � ��� ��� ��� ��� ��� ��� ��� ��� �� ��

�� �� �� �� � � � � � �

itg � ��� ��� ���� ���� 	��� ����

cbrk � �
� ck�bt � �
� c�dm � �
�

isld � � idout � � idft � �


end


data	

f�n � �dpdata
bbr� f�n � �inwdata
bbr� f	n � �srcdata�

f�n � �eta�tsx
out� f�n � �eta�tsy
out� f�n � �etaxy�

f�n � ��tmp�etts
out�


end

From the above input data �le
 the number of time steps for the model to run for
this case is nt � ����
 which is equivalents to �� wave periods� Numerical �lter ���D
nine point weighted�average� is used in this example for every ��� time steps �i�e�
itftr � 
���
 which eliminates the potential unstable problem caused by short waves
generated by the model� Figure �	 shows the spatial pro�le of surface elevation at
the last time step from the model� The dark and light shade regions corresponding
positive and negative values of �
 respectively� The solid lines in the plot denote the
contours of bottom geometry� The surface pro�les show strong focus of wave energy
behind the shoal
 indicating large e�ect of wave di�raction which prohibits the use
of ray tracing method but is valid for models based on mild slope equation� The
uniformly grey shade at the two sponge layer regions corresponds to near zero surface
elevation
 indicating wave energy was absorbed properly at those boundaries�

Figure �� shows the time series of surface elevation � at various locations
 with their
corresponding coordinates �x� y� indicated in the plot� Since cold start was used as
initial conditions in the model
 surface elevation � at t � � are zero everywhere� As

�	
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Figure �	� Computed time series of surface elevation at various locations

waves are generated in the source region and propagate
 surface elevations at speci�ed
points start to increase in magnitude
 until reach corresponding stable values
 with
points close wavemaker taking less time for the transition period� Surface elevations
from the points inside strong focus region have narrow crests and broad troughs

indicating that nonlinear interaction has e�ect on wave transformation� However

there is no experimental data available to compare with these results� Figure ��
shows that the computed wave �eld reaches a stable state after t � �� s�

Once the model reaches quasi�stable condition
 wave amplitude at various points can
be computed from the corresponding time series of �� The output �le f�n stores the
spatial pro�les of � for the last ��� time steps �i�e�
 from it � �	�� to it � ����

or � wave periods�
 which is equivalent to storing the time series of � for the last
��� time series for every grid point� Using a zero�crossing method
 the corresponding
wave amplitude for every grid point can be computed� This is done by the post�
processing program b�dp��f � Figure �
 shows comparisons between model results
and experimental data along the eight transects where measurements were made�

The computing results of wave heights from the numerical model agree quite well with
experimental data
 in both sections parallel or normal to incident wave direction� In
the past
 models based on mild slope equations have been applied to this case and


��
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Figure ��� Computed time series of surface elevation at various locations

in general
 good agreement has been found
 see
 for example
 Berkho� et al� ���
��

Kirby and Dalrymple ���
��
 and Panchang and Kopriva ���
��� Among mild slope
models
 the one given by Kirby and Dalrymple ���
�� used third�order Stokes wave
dispersion and showed the best agreement
 indicating nonlinearity is important for
accurate modeling� This is also veri�ed by the present Boussinesq model which results
in better agreement with data compared to mild slope models using linear dispersion
relation�

��� Wave Propagation over a Shoal� Chawla et al� �����


�
	
� Non�breaking Waves

To study wave transformation in coastal regions and to provide measured data for
comparison with REF�DEF model and other wave models
 Chawla et al� ����	�
conducted a series of experiments in the wave basin at the Center for Applied Coastal
Research in the University of Delaware� The experiments consist of regular and
random waves
 with low and high wave amplitude �corresponding to nonbreaking
and breaking cases
 respectively�
 and with broad and narrow frequency band and

�
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directional spreading� Figure �� shows the experiment layout
 where a circular shoal
with radius of ���� m is built on a  at bottom basin of dimension �
��m� ��m�

Incident waves are generated by a  ap�type wavemaker on the left end of the domain
and propagate across the basin� On the right end there is a beach which consists of
small rocks and dissipates wave energy� The top and bottom edges are vertical walls
which allow waves to re ect back to the domain� Time series of surface elevation �
are collected by the gage array which locates along the transects of A � A
 B � B

C � C
 D �D
 E � E
 F � F 
 and G � G� The corresponding wave amplitudes at
the wave gage locations are computed from the collected data� The detailed setup of
the experiment can be found in Chawla �������

Three sets of data �TEST �
 TEST � and TEST �� are available for nonbreaking
regular wave experiments� The numerical model was applied to all three test cases
and good agreement between data and model was found� In the following
 only results
from TEST � from data and model are compared in details� First
 the bathymetric
data �le is generated by program depth�f � The next step is to prepare the initial data
�le using program initw�f � We start the model from still water �i�e� cold start�� The
speci�cation �le funwave�d�data for this case is�

	�




data�


ibe � � imch � �

a� � �
����	 h� � �
�� tpd � �
�

dx � �
�� dy � �
� dt � �
��

mx � ��� ny � ��	 nt � ����

itbgn � 	��� itend � ���� itdel � �

itscr � ��� itftr � ��� theta � �
�

cbkv � �
� delta � �
� slmda � �
�

isltb � ��� islte � ���


end


data�

isrc � �� jsrc � �

cspg � ��
� cspg� � �
� cspg	 � �
�

ispg � �� �� � �

ngage � ��

ixg � ��	 ��� ��� ��� ��� ��� ��� �	� ��� ���

��	 ��� ��� ��� ��� ��� �	� �	� �	� �	�

iyg � �� �� �� �� �� �� �� �� �� ��

��	 ��� ��	 ��� ��	 ��� ��� ��	 ��� ��	

itg � ��� ��� ���� ���� 	��� ����

cbrk � �
� ck�bt � �
� c�dm � �
�

isld � � idout � � idft � �


end


data	

f�n � �dpdata
cacr�

f�n � �inwdata
cacr�

f	n � �srcdata�

f�n � �eta�tsx
out�

f�n � �eta�tsy
out�

f�n � �etaxy�

f�n � ��tmp�etts
out�


end

Except for the number of grids �i�e� mx� ny� and input data �le names for f�n and
f�n
 The parameters in the above input �le are the same as those in previous section�
Since the experiment data for time series of surface elevation ��t� are available
 we
compare these results of ��t� with the numerical models
 as shown in Figure ���
Good agreement is found not only in wave heights and wave phases
 but also in the
asymmetry of wave shapes�
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elevation at various locations for Test � of Chawla et al� ����	��

In the experiment
 data from nine gages in the gage array were collected simultane�
ously� Then the gage array was moved to a new position to take measurement by
repeating the same experiment� Due to the uncertainty for the exact time to start
each experiment
 the original time series of data exhibit arbitrary phase shift for dif�
ferent gage array positions� It is necessary to adjust experimental data by shifting
phase for meaningful comparison with the numerical results� For each gage array

only one gage is required to do phase shift due to exact synchronization for all gage
data�

After wave �elds reached stable condition
 zero�upcrossing method was applied to the
subsequent time series of surface elevation for obtaining wave heights� For experiment
data
 a time interval of �� periods was used to compute averaged wave height� Prior to
wave height computation
 a Butterworth �fth�order bandpass �lter was �rst applied
to eliminate noise or higher harmonic components� For time series computed from the
model
 data segments from t � �	 s to t � �� s were used to compute wave height�
Since numerical �ltering has been applied spatially for every ��� time steps in the
model simulation
 it is not necessary to apply extra �lter to the resulting time series�
Comparisons of wave amplitude between the model and data along all transects from
A� A to G�G are shown in Figure ���

	�



0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04
A−−A

x (m)

A
m

pl
itu

de
 (

m
)

0

0.01

0.02
B−−B

0

0.01

0.02
C−−C

0

0.01

0.02
D−−D

0

0.02

0.04
E−−E

A
m

pl
itu

de
 (

m
)

0

0.01

0.02
F−−F

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02
G−−G

y (m)

Figure ��� Comparison of wave amplitude along speci�ed transects� solid line � model
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Due to a slightly o��center position for the shoal location in the basin
 the wave
height distributions along y axis are not symmetric� The asymmetry becomes more
apparent for transects away from the wavemaker
 indicating re ecting e�ect from
side walls increases� The e�ect of asymmetry and the zigzag variation of wave height
distribution along y axis were accurately predicted by the numerical model�

�
	
� Breaking Waves

A more demanding test for the Boussinesq model is wave propagation and breaking
over a submerged shoal� We choose another test case from Chawla et al��s ����	�
experiment with wave breaking to verify our model� In this case
 the water depth ho
is ���� cm� The input monochromatic wave has � cm wave height and � s period�
As the front face of a breaking�broken wave becomes very steep
 �ner grid size in
comparison with that for the case of non�breaking is required in order to resolve the
wave� Thus we reduce the grid size in the x direction to ����� m
 leading to about ��
grids per wave length on top of the submerged shoal
 while the grid increment along
the y axis and the time step remain identical to those in the case of non�breaking
waves�

The speci�cation �le is given as follows


data�


ibe � � imch � �

a� � �
�� h� � �
	�� tpd � �
�

dx � �
��� dy � �
� dt � �
��

mx � ��� ny � ��	 nt � ����

itbgn � 	��� itend � ���� itdel � �

itscr � �� itftr � ��� theta � �


cbkv � �
	� delta � �
� slmda � �
�

isltb � ��� islte � ���


end


data�

isrc � �� jsrc � �

cspg � ��
� cspg� � �
� cspg	 � 
�

ispg � �� �� � �

ngage � ��

ixg � ��� ��	 ��� �	� ��	 ��� ��� ��� ��� ���

�	� ��� ��� ��� ��� ��� ��� 	�� � � �

iyg � �� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� � � �

	�



itg � ���� ���� 	��� ���� ���� ����

cbrk � �
� ck�bt ��
�e�	 c�dm � �
��

isld � � idout � � idft � �


end


data	

f�n � �dpdata�bk
cacr�

f�n � �inwdata�bk
cacr�

f	n � �srcdata�

f�n � �eta�tsx�bk
out�

f�n � �eta�tsy�bk
out�

f�n � �etaxy�

f�n � ��tmp�etts
out�


end

First
 we use program depth�f to generate the bathymetric data� Then
 program
initw�f is employed to prepare the initial condition� Starting from still water
 the
Boussinesq model is run for �� seconds� To remove the e�ects of transients asso�
ciated with the cold start of wave �eld and the wave breaking
 we compute the
root�mean�square wave height Hrms using the last �� seconds of numerical results
and the collected data� The empirical parameters for the wave breaking model are
chosen to be the lower limit of the values indicated in Section ���� Figure �� presents
the comparisons of the modelled results and measurements along the longitudinal
transect �A�A� with respect to the normalized Hrms
 skewness and asymmetry� The
computed Hrms and third�moments agree fairly well with the laboratory data�

The bottom topography along the A�A transect is shown by panel d in Figure ���
Several interesting phenomena are observed from Figure ��� First
 we notice that
the wave height does not reach the largest on top of the shoal but on the downward
slope instead� This is attributed to the focusing e�ect of wave refraction on the
shoal� However
 the wave skewness and asymmetry appear to be the maximum near
the crest of the shoal
 as indicated by both the numerical and measured results� It is
known that skewness and asymmetry are a measure of wave nonlinearity� Apparently

the degree of wave nonlinearity at the focusing point with the maximum wave height
is weaker than that on top of the shoal where the water depth is the minimum�
Secondly
 both depth�limited wave breaking and wave de�focusing reduce the wave
height� The combined decrease of wave height is much faster in comparison with the
case of non�breaking waves� Consequently
 the large gradient of radiation stresses will
drive horizontal circulations around the submerged shoal�

Figure �� depicts the data�model comparison of normalizedHrms along six transverse
transects� First
 on top of the shoal �i�e� F�F�
 we notice that the agreement is fairly
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Figure ��� Model�data comparisons along A�A transect� �a� normalized Hrms� �b�
normalized skewness� �c� normalized asymmetry� �d� bottom topography� Solid Lines�
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good� On the downward slope
 the Boussinesq model captures the focusing e�ects
very well as shown by E�E transect� Furthermore
 the de�focusing and di�raction of
the broken waves behind the shoal �i�e� B�B to D�D� are also predicted reasonably
well by the Boussinesq model�

A computed wave �eld at the end of the simulation is shown in Figure �� where
the gray areas represent the modelled wave crests while the dark areas are the wave
troughs� Wave refaction over the shoal is clearly shown by the bending of wave crests
on top of the shoal� Wave di�raction is also visible by the variation of wave crests
in the transverse direction� It is worth mentioning that secondary wave crests are
observed behind the submerged shoal due to the release of superharmonics generated
by nonlinear shoaling� However
 the magnitude of harmonics higher than the primary
wave is somewhat over�estimated and their phases may be inaccurate because of the
large wave numbers of the higher harmonics at those locations� Model equations with
Pade ��
�� dispersion properties applicable to kh � 	 �e�g� Chen et al�
 ���
a
 Madsen
and Sch!a�er
 ���
a
 Gobbi et al�
 ����� are therefore needed in order to accurately
model the released
 free
 higher harmonics in these two test cases�

There is no measurement of breaking�induced circulation in the Chawla et al��s ����	�
experiments� However
 a strong jet associated with wave breaking on top of the shoal
was visually observed during the experiment� The information of circulation can be
extracted from the numerical results� Figure ��b illustrates the underlying current
�eld generated by wave breaking over the shoal after �� seconds have elapsed in
the simulation� The current �eld is obtained by averaging the instantaneous  uid
particle velocity at the reference level z� over two wave periods� In connection with
the simulation of breaking�induced currents
 the bottom friction coe�cient of f �
��� ����� and a subgrid mixing model is used� Notice that the jet�like current tends
to be unstable and vortices are likely to appear as shown by the meandering of the
computed current and the vortex pair� An account of the instability of jet�like rip
currents and the mechanism of vortex generation is given in Chen et al� �����b��

��� Wave Runup on a Conical Island

Briggs et al��s ������ laboratory experiment on solitary wave runup on a conical island
has served as a benchmark for the veri�cation of tsunami runup models �see e�g� Liu
et al�
 ����� Titov and Synolakis
 ���
�� We shall use the measurements from their
physical experiment to validate our runup schemes for two horizontal dimensions�

A schematic view of the wave basin for Briggs et al��s ������ experiments is shown in
Figure �� where solitary waves are generated on the western boundary and propagate
toward the eastern boundary� The wave basin is �� m long and �� m wide� A conical
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ment�

island with a slope of ��� is placed on an otherwise  at bottom in the basin� The
center of the island is located at x � �� m and y � �� m� The diameters of the island
on the bottom
 at the still water line
 and on the top are respectively ��� m
 ��	� m

and ��� m� The water depth of the basin is ���� m� Further information about the
experiment set�up can be found in Briggs et al� ������ and Liu et al� �������

There are three test cases with available data sets including measurements of maxi�
mum runup height and free surface elevation around the island� The initial conditions
for the three cases have � � ����
 ��� and ���
 respectively� � denotes the height�to�
depth ratio of the incident solitary waves� The water depth remain the same in all
three cases� The grid size is chosen to be ��� m in both x and y directions� ����
second is used as the time step� Solitary waves are generated by de�ning the initial
conditions for the model based on the analytical solutions to the Boussinesq equations
with a constant water depth as implemented in init�f � The crest of the solitary waves
at t � � is located at x � ��� m� At the four lateral boundaries
 closed boundaries
are imposed� For illustration
 we give the speci�cation �le for Case � as follows


data�

ibe � � imch � �

a� � �
�	� h� � �
	�� tpd � �

dx � �
� dy � �
� dt � �
��

��



mx � 	�� ny � 	�� nt � ����

itbgn � ��� itend � ���� itdel � �

itscr � �� itftr � ��� theta � �
�

cbkv � �
	� delta � �
�� slmda � ��
�

isltb � ��� islte � 	��


end


data�

isrc � �� jsrc � �

cspg � ��
� cspg� � �
� cspg	 � �
�

ispg � �� �� � �

ngage � �	

xg � ��� �	� ��� ��� ��� ���

��� ��� ��� ��� ��� ���

��� ��� ��	 ��� ��� ���

��� ��� � � �

iyg � ��� ��� ��� ��� ��� ���

��� ��� ��	 ��� ��� ���

��� ��� ��� ��� ��� ���

��� ��� � � �

itg � ��� ��� ��� ��� �	� ���

cbrk � �
� ck�bt � �
�e�� c�dm � �
�

isld � � idout � � idft � �


end


data	

f�n � �island
bat�

f�n � �island
int�

f	n � �srcdata�

f�n � �eta�tsisld
out�

f�n � �eta�tsyrip
out�

f�n � �etaxy�

f�n � ��tmp�etts�w
out�


end

First
 we prepare the bathymetry using depth�f � As the second step
 program initw�f
is employed to generate the initial solitary waves� a� in funwave�d�data should be set
to zero after running initw�f � Notice that isld � � in this case� Figure �	 presents
model�data comparisons of the maximum runup heights around the island for the
three test cases� The full lines represent the numerical results while stars denote the
data measured by Briggs et al� ������� The horizontal axis is the angles between

��



the radius and the center line of the island in the incident wave direction� In other
words
 a zero degree is the front side of the island while the location with �
� degrees
is the lee side� Runup heights are normalized by the height of the incident solitary
wave� The model results of runup are stored in rpild�out� As the measurements
show that the maximum runup heights are not perfectly symmetric about the center
line of the island
 we compare the numerical results with the averaged data� Good
agreement between model predictions and measurements is observed� The runup
scheme captures the signature of two dimensional runup as shown by the correct
variation of the runup heights around the island� Although a slight discrepancy is
found on front side of the island in the comparison of Case �
 the overall agreement
is as good as the non�breaking cases�

In addition to the distribution of maximum runup heights
 we compare the computed
time series of free surface with the measurements at �ve locations in Case �� Gauge
� is located close to the input boundary while the other four gauges are around the
island near the still water shoreline� Figure �� shows that the computed primary
waves agree reasonably well with the measurements�

The present model with permeable�seabed technique for shoreline runup
 however

appears to under�predict the depression of the free surface
 or the re ected waves by
the island� This is shown by the model�data comparison of Gauge � located in front
of the island� The discrepancy is attributed to the slight loss of wave energy and
momentum because of the presence of the narrow slot� Owing to the very steep slope
of the island ����� and the high nonlinearity of the solitary waves in Cases � and �

a slot width ten times larger than the optimal values �see Kennedy et al�
 ����� are
used here for the concerns of numerical instability� A low pass �lter localized in the
swash region is also utilized to suppress possible noises due to the use of a slot�

As discussed in Liu et al� ������
 a collision of the trapped solitary waves on the
lee side of the island could lead to a runup height which can exceed the maximum
runup on front side of the island� Figure �
 illustrates the collision process in Case ��
The time sequence of the computed free surface shows the scenarios of head on and
collision of the trapped solitary waves on the lee side of the island� The generally good
agreement in this section demonstrates the capability of the model for the simulation
of shoreline runup in two horizontal dimensions�
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Figure �	� Comparison of computed and measured runup heights� Stars� measured�
solid lines� computed�
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Figure �
� Sequence of solitary wave runup on the lee side of the island in Case ��
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Appendix A� FUNWAVE ��	� One
Dimensional Ver


sion�

The package of funwave�d model contains the following �les�

funwave�d
f � main program�

depth
f � program to generate bathymetry�

initw
f � program to generate initial conditions�

�dsource
f � program to generate data for incident waves�

param
h � parameters for the arrays�

funwave�d
data � specification file for funwave�d
f�

�dsource
data � specification file for �dsource
f�

plotstuff�
f � for online animation�

plotstuff�
f � no animation�

plot
c � animation�

plotinit
c � animation�

plotfn
c � animation�

funwave�d
web � source code with documentation for funwave�d
f�

�dsource
web � source code with documentation for �dsource
f�

Makefile � To generate �
f files from �
web files�

to compile the funwave�d
f and �dsource
f� and

to generate �
tex files in latex format


Makefileng � A counterpart of Makefile for machines without GL
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Appendix B� FUNWAVE ��	� Two
Dimensional Ver


sion�

The package of funwave�d model contains the following �les�

funwave�d
f � main program�

depth
f � program to generate bathymetry�

initw
f � program to generate initial conditions�

b�dp�
f � program to extract free�surface data from f�n�

b�dp�
f � program to compute zero�crossing wave height�

b�dp	
f � program to extract mean�current data from f�n�

funwave�d
data � specification file for funwave�d
f�

funwave�d
web � source code with documentation for funwave�d
f�

Makefile � To generate �
f file from �
web file�

to compile the �
f files� and

to generate �
tex file in latex format
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